liveonearth: (Default)
[personal profile] liveonearth
If LOW RBC, Hgb, or Hct
Then evaluate MCV & MCHC to determine if anemia is:
-microcytic hypochromic (MCV < 82 fL, MCHC < 30 g/dL)
Iron deficiency anemia
Thalassemia
Sideroblastic anemia
Anemia of chronic disease (some cases)
Pyridoxine Responsive anemia (B6 deficiency)
Chronic blood loss
Lead poisoning
-normocytic normochromic (MCV 82-97 fL, MCHC 32-36 g/dL)
Acute blood loss
Early stage Iron deficiency anemia
Hemolytic anemia from any cause
Anemia of Chronic Disease (ACD)
Hereditary spherocytosis – osmotic fragility test
Aplastic Anemia
-macrocytic (MCV > 97 fL) (remember theoretical upper limit of 37 g/dL for MCHC)
B12 deficiency
Folate deficiency
Myelodysplastic Syndrome
Hypothyroidism
Cancer chemotherapy
Alcohol abuse
Liver disease

MACROCYTIC ANEMIA
--TYPES: B12/folate deficiency, myelodysplastic syndrome, hypothyroidism, cancer chemotherapy, alcohol abuse, liver disease
--ETIO: B12/folate deficiency, cytotoxic drugs-->defective DNA syn w/ normal RNA synthesis-->cytoplasm grows but nucleus doesn't
--ETIO: hyperthyroidism, pregnancy, disseminated cancer (dt increased requirement)
--ETIO: impaired DNA syn, alcoholism, VEGAN diet (all B12/folate)
--Dx: MCV > 95-100, macrocytes tend to be round not oval
--Dx: aniso, poik, high RDW, Howell Jolly bodies
--Dx: with alcoholism/liver dz see Target cells
--Dx: BM is markedly hypercellular dt increased numbers of all myeloid precursors
--Dx: hypersegs (neuts & eos)-->neutropenia
--Dx: retics may be elevated if BM is overstimulated in response to hemolysis
--Dx: consider thyroid testing
--Tx: B12 supplementation may not succeed if poor absorption dt no gastric parietal cells or intrinsic factor, due to autoimmune destruction of those cells

MEGALOBLASTIC VS MACROCYTIC is there a difference? the notes are confusing.
--megaloblastic: B12/folate deficient, drugs (dilantin), inborn errors of metabolism
--macrocytic: alcoholism, liver dz, hypothyroidism, myelodysplastic syndrome, chemotherapy
--megaloblastic = impaired DNA synthesis-->delayed division of rapidly proliferating cells (skin, GI, mucosa, hematopoietic cells)-->cellular gigantism "megaloblastosis"...so maturation asynchrony with cytoplsm growing at normal rate but nucleus retarded-->hemolysis in blood-->pancytopenia in severe cases
--common LAB features of (Macrocytic) Megaloblastic anemia: varying degrees of anemia, increased bilirubin dt hemolysis, macro-ovalocytes on blood smear, HOWELL-JOLLY BODIES in RBC's, hypersegmented neutrophils on smear, BM exam shows megaloblastic changes

PERNICIOUIS ANEMIA
--chronic dz<-impaired absorbtion of B12<-lack of intrinsic factor in gastic secretions
--cobalamin = vitamin B12
--most in Celts and Scandinavians (10-12/100,000)
--damage to gastric mucosa mbdt an autoreactive T-cell response leading to Abs against parietal cells (in 90% of pts with PA but only 5% of healthy adults)
--3 types of Abs found in pernicious anemia: 1) type I blocks binding of B12 to IF, 2) type II prevents binding of IF-B12 complex to ileal receptor, 3) type III not specific to PA but found in up to 50% of elders with chronic gastritis
--neurological complications B12 deficient and unTx: myelin loss in nerves of posterior column, megaloblastic madness: delusions, hallucinations, outbursts, paranoid schoziphrenic ideation
--in elderly: Alzheimers, memory loss, irritability, personality change
--pt may have neuro Sx w/o anemia when taking folate/high folate diet but still B12 deficient
--foods containing much cobalamin: meat and milk
--possible association between PA and H. pylori infx
--definite association between PA and other autoimmune dz
--people with pernicious anemia might also have H. pylori because they have a 2-3x risk of gastric carcinoma
--PA in adults assoc w/ gastric atrophy and achlorhydria-->iron deficiency; without acid dietary ferric is not solubized from foodstuffs
--Dx: gold standard of diagnosis for pernicious anemia: endoscopic biopsy of gastric mucosa showing depleted parietal cells, gastric "intestinalization" (stomach has goblet cells like intestine)
--S/Sx: oral: atrophic glossitis
--best way to test for B12 deficiency: serum < 180pg/mL (insurance pays for this test) or more reliable, RBC levels (insurance not pay)
--other findings that may indicate B12 deficiency: increased serum homocysteine and methylmalonic acid
--risks assoc w/ increased homocysteine and methymalonic a.: atherosclerosis and thrombosis

FOLATE = pteroylmonoglutamic acid
--folate stores last weeks to 4 months, daily requirement is 50-100 micrograms
--dietary sources of folate: green leafy veggies (foliage), lemons, bananas and melons, yeast and liver
--meds that interfere with folate absorbtion: dilantin, oral contraceptives, phenytoin
--not much stored in body: a continuous dietary supply is needed
--reasons for folate deficiency besides poor diet: overcooking food, alcoholism, malabsorption (bact overgrowth), increased requirements: pregnancy, disseminated cancer, hemolytic anemias, dialysis
--drugs impair the body's use of folate: methotrexate (chemo)
--serum folate test measures methylfolate, mb increased in 1/3 of B12 pts dt B12 needed to transfer methyl group to form tetrahydrofolate (metabolically active form)
--decreased serum folate mb unreliable dt recent low folate diet, or absorption probs
--BEST method to assess folate levels in tissues: RBC folate
--serum findings in folate deficiency: megalocytes in blood (megaloblasts in marrow), multinucleated neuts (hypersegs), decreased folate level, elevated homocysteine
--folate deficiency in pregnant women leads to babies with neural tube defects (spina bifida), low birtyh weight, cleft lip and palate
--enzyme impaired by cobalamin/folate deficiency: thymidine synthase--/-->DNA synthesis

B12 DEFICIENCY
--usu a 2-5 year store in liver
--irreversible neuro damage can result from deficiency
--3 common causes: malabsorption (low/lack IF, pernicious anemia), B12 degradation (bact overgrowth, worms), low dietary intake (relatively rare)
--B12 assays using intrinsic factor as only binding prot give true values for serum B12
--serum B12 decreased in 30% of pts with folate deficiency
--urine methymalonic acid assay (MMA): excretion is increased in 95% of pts with B12 deficiency
--MMA conversion to succinic acid requires B12 cofactor

HYPOTHYROIDISM
--anemia in 30-50% of pts
--morphology ranges from macro to microcytic
--decreased thyroid hormone has a direct effect on erythropoiesis since hormone administration corrects both anemia and hypothyroid condition
This account has disabled anonymous posting.
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

Profile

liveonearth: (Default)
liveonearth

May 2025

S M T W T F S
    123
45678910
11121314151617
1819202122 2324
25262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated May. 28th, 2025 03:12 pm
Powered by Dreamwidth Studios